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Abstract

Generative Design (GD) has evolved as a transformative de-
sign approach, employing advanced algorithms and AI to cre-
ate diverse and innovative solutions beyond traditional con-
straints. Despite its success, GD faces significant challenges
regarding the manufacturability of complex designs, often
necessitating extensive manual modifications due to limita-
tions in standard manufacturing processes and the reliance
on additive manufacturing, which is not ideal for mass pro-
duction. Our research introduces an innovative framework
addressing these manufacturability concerns by integrating
constraints pertinent to die casting and injection molding
into GD, through the utilization of 2D depth images. This
method simplifies intricate 3D geometries into manufac-
turable profiles, removing unfeasible features such as non-
manufacturable overhangs and allowing for the direct consid-
eration of essential manufacturing aspects like thickness and
rib design. Consequently, designs previously unsuitable for
mass production are transformed into viable solutions. We
further enhance this approach by adopting an advanced 2D
generative model, which offer a more efficient alternative to
traditional 3D shape generation methods. Our results sub-
stantiate the efficacy of this framework, demonstrating the
production of innovative, and, importantly, manufacturable
designs. This shift towards integrating practical manufactur-
ing considerations into GD represents a pivotal advancement,
transitioning from purely inspirational concepts to actionable,
production-ready solutions. Our findings underscore useful-
ness and potential of GD for broader industry adoption, mark-
ing a significant step forward in aligning GD with the de-
mands of manufacturing challenges.
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1 Introduction

Generative Design (GD) represents a transformative approach
in design methodology, leveraging algorithms, artificial intel-
ligence (AI), and computational techniques to generate a vast
array of design possibilities. This paradigm shift enables the
exploration of numerous permutations far beyond traditional
design methods, where outcomes are typically constrained by
the designer’s experience and the inherent limitations of man-
ual processes. To date, GD has achieved remarkable success
in producing diverse and innovative designs, optimizing for
mechanical performance and aesthetic criteria [1]–[7].

However, a critical issue has emerged concerning the man-
ufacturability of these complex designs. The intricacies and
unconventional geometries frequently produced by GD pose
significant challenges for traditional manufacturing processes
such as die-casting or injection molding [8]. Consequently,
additive manufacturing (AM) techniques have become the
go-to solution for fabricating GD-generated shapes [9], [10],
despite AM’s limitations for large-scale production due to
cost and time constraints [11], [12]. This disconnect be-
tween design generation and mass-manufacturability neces-
sitates substantial manual revisions by designers, diminish-
ing GD’s practicality for industrial applications. Thus, the
current role of GD is predominantly inspirational, providing
conceptual direction rather than actionable, production-ready
solutions.

Our paper introduces a simple but innovative framework in
Fig. 1 that addresses the manufacturability concerns in GD
by incorporating constraints relevant to die casting and injec-
tion molding, utilizing 2D depth images. These images sim-
plify complex 3D geometries into manufacturable profiles by
mapping the designs onto top and bottom plane projections.
This process not only eliminates impractical features, such
as overhangs, but also facilitates the consideration of criti-
cal factors for manufacturing like thickness and rib design di-
rectly through depth values. By transforming previously non-
manufacturable designs into ones suitable for mass produc-
tion, our method integrates advanced 2D generative models,
including VAE, GAN, and diffusion probabilistic models, to
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Figure 1: The framework of the proposed method, highlighting its capability to: (a) transform 3D shapes into designs suitable
for mass production by using reconstructions from two 2D depth images, (b) while also leveraging powerful 2D generative
models to create novel, diverse, and manufacturable 3D designs

efficiently generate innovative and diverse designs rather than
relying on slow and heavy 3D models. Our method, which
aligns GD with practical manufacturing needs, represents a
significant shift from generating mere conceptual ideas to
providing actionable, manufacturable solutions, thereby en-
couraging wider industry adoption. This combined focus on
manufacturability, efficiency, and innovation through the use
of 2D depth images marks a considerable advancement in
making GD a practical tool for contemporary manufacturing
challenges.

In summary, our contributions are as follows:

• Proposing a framework to incorporate manufacturability
constraints, such as die casting and injection molding,
into GD using 2D depth images

• Simplifying complex 3D designs into manufacturable

2D profiles, addressing key manufacturing challenges
such as overhangs

• Employing advanced generative models on 2D depth im-
ages to enhance design diversity and efficiency

• Demonstrating how our approach streamlines GD for
practical manufacturing applications, promoting wider
industry adoption and innovation

2 Shape Reconstruction

2.1 Dataset
In our study, we employed the SimJEB engine bracket dataset
[13] shown in Fig. 3 for the analysis. To ensure consistency
and relevance to our manufacturing constraints, we filtered
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Figure 2: Calculating the distances between the top and bottom planes allows for the creation of 2D depth grids representing 3D
shapes. This process facilitates the reconstruction of shapes, inherently removing any overhangs that cannot be manufactured.

Figure 3: SimJEB engine bracket dataset [13]

Figure 4: A subset of the calculated depth images

the dataset to include only those models that shared similar
boundary conditions, which are the mounting holes in this
dataset. This filtering process reduced the original dataset
size from 381 to 264 models.

We stress that our methodology is adaptable to any 3D
CAD or mesh-based datasets. Its flexibility in handling com-
plex geometries and applying manufacturability constraints
via 2D depth images makes it broadly applicable across vari-
ous design and manufacturing domains.

2.2 Depth Calculation

The z-axis was chosen as the primary direction, as illustrated
in Fig 2. This selection was based on the observation that the
cross-section of most shapes in the dataset was largest when
perpendicular to the z-axis, thus enabling the straightforward
application of our research findings. It is important to note,
however, that the optimal axis may vary for different objects.

To perform the depth calculations necessary for our ap-
proach, we established 2D discrete grids with a resolution of
256, positioned in planes perpendicular to the z-axis. The
depth at each point on these grids was determined by launch-
ing rays in the z-axis direction, from both the top and the bot-
tom surfaces of the engine bracket shapes. Specifically, we
calculated depth values at z = 0.4 for the top plane and z = -
0.4 for the bottom plane, within a space defined by an implicit
representation. This method of using implicit representations
for depth calculation ensures greater accuracy in the resulting
depth values, presented in float format. It offers a significant
advantage over voxelization techniques, which tend to yield
less precise values unless extremely high resolutions are em-
ployed. A subset of the obtained depth images are shown in
Fig. 4.

The depth images obtained from scanning the shapes can
be considered as an inverse of the mold design typically used
in die casting or injection molding processes. This perspec-
tive allows us to directly relate the geometric features cap-
tured in the depth images to practical mold designs, enhanc-
ing the applicability of our results to the manufacturing field.
We refer to a comprehensive review of the latest computa-
tional mold design techniques by [8] for more information.

2.3 Manufacturable Shape Reconstruction

The generative model employed in our study produces depth
images, where each pixel is assigned a specific depth value,
representing the in-space heights from the predefined top and
bottom planes. This depth information serves as a critical
component in reconstructing manufacturable shapes. By pro-
jecting these depth values from the top and bottom planes,
we can reconstruct a three-dimensional shape that adheres to
the manufacturability constraints integral to the die casting or
injection molding processes as shown in Fig. 2.

An innovative aspect of our approach is that the overall
shape of the designed object can be effectively defined using
just two depth images oriented in the casting direction. This
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Figure 5: Illustration of the original and the reconstructed
(recon.) shapes. The top and the bottom are identical.

method naturally eliminates any non-manufacturable over-
hangs, which are features problematic for traditional mass
production processes. By doing so, it ensures that all ele-
ments of the reconstructed shape are manufacturable. The
reconstruction results are shown in Fig. 5.

For intricate features such as holes that may occur in the
y-axis of the bracket, we incorporate a post-processing step.
Boolean operations are applied to the resultant mesh to intro-
duce these features accurately. This allows for the inclusion
of necessary functional aspects, such as mounting holes for
the engine brackets, without compromising the manufactura-
bility imposed by the constraints of traditional casting tech-
niques. By integrating this post-processing step, our method-
ology ensures that the final reconstructed shapes are not only
optimized for manufacturing but also meet the required de-
sign specifications.

3 Design Generation
Our approach utilizes Denoising Diffusion Probabilistic
Models (DDPMs) [14] to create 2D depth images, facilitat-
ing the generation of manufacturable designs while retaining
a high degree of diversity and complexity. This section out-
lines the methodology employed for design generation within
our framework.

3.1 Denoising Diffusion Probabilistic Models
DDPMs are a class of generative models that learn to grad-
ually denoise a signal, starting from a random distribution
and moving towards the distribution of the target data. In our
case, the target data consists of 2D depth images represent-
ing the top, bottom, and edge profiles of designs subject to
manufacturing constraints.

The DDPM process can be mathematically described in
two phases: the forward process and the reverse process.

Forward Process. The forward process, also known as the
diffusion process, involves adding Gaussian noise to the data
over a series of steps, transforming the original data x0 (our
depth images) into a completely noisy state xT . This can be
represented as:

xt =
√

αtx0 +
√

1−αtεt (1)

where t ranges from 1 to T , αt are fixed variance schedules,
and εt is sampled from a standard normal distribution. This
process generates a sequence of increasingly noisy images.

Reverse Process. The reverse process, or denoising pro-
cess, aims to learn the distribution of the original data by
reversing the diffusion process. It is modeled by a neu-
ral network that parameterizes the conditional distribution
p(xt−1|xt). The objective is to gradually denoise the images,
starting from noise xT and moving towards the data distribu-
tion to generate a clean image x0:

xt−1 =
1

√
αt

(
xt −

1−αt√
1−αt

εθ (xt , t)
)
+σtz (2)

where εθ (xt , t) is the output of the neural network, providing
an estimate of the noise, and z is a noise term that is gradually
phased out as t decreases.

3.2 Adaptation to Depth Images
Our approach adapts DDPMs to the domain of depth images
by considering them in floating-point format instead of the
traditional integer format for bitmap images. This allows us
to capture more detailed gradients and subtleties in the depth
profiles, which is crucial for accurate representation of man-
ufacturable designs.
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3.3 Edge Detection

Figure 6: The top, bottom and edge channels used to train the
design generation model

In our framework, edges within the depth images are high-
lighted using Canny edge detector [15] to emphasize critical
geometric features. We incorporate these edge features di-
rectly into the diffusion process along with the top and bot-
tom depth images, allowing the model to better understand
and generate the important boundaries and interfaces of the
designs, while conserving the continuity between the top and
the bottom shapes. This three-channel representation consists
of top, bottom, and edge details shown in Fig. 6 enables high
quality generation. We stress that the edge channel is only
used to aid the training process, not for the shape reconstruc-
tion.

3.4 Training and Generation
The diffusion model is trained on a dataset of the depth im-
ages obtained in Sec. 2.2. The model learns to generate new
designs that inherently respect these constraints, thus ensur-
ing manufacturability without compromising design diver-
sity. The training of the DDPM involves optimizing the neu-
ral network to accurately estimate the noise in the diffusion
process, thereby improving the quality and accuracy of the
generated designs.

After the training, the model can generate new depth im-
ages by sampling from the noise distribution and iteratively
applying the learned denoising steps. The generated depth
images are shown in Fig. 7. These generated images are then
used to generate 3D models as shown in Fig. 8.

4 Conclusion

4.1 Summary
Our study marks a significant advancement in melding GD
with practical mass production techniques, particularly die
casting and injection molding. Through the innovative inte-
gration of manufacturability constraints via 2D depth images,
we bridge a crucial gap between imaginative GD concepts
and their viability for real-world mass production. Our ap-
proach streamlines the complex translation from intricate 3D
geometries to manufacturable 2D profiles while leveraging

Figure 7: Depth images generated by DDPM

the efficiency and diversity of advanced 2D generative mod-
els. The significant outcomes of our research, which high-
light reduced computational costs, shortened timelines from
design to production, and the generation of more diverse, in-
novative designs, underscore the profound impact of incor-
porating practical manufacturing considerations into GD, en-
hancing its utility with broader industry adoption. We argue
that this methodology represents a crucial step forward, trans-
forming GD from a mere conceptual tool into a practical, ef-
ficient, and innovative solution for the manufacturing chal-
lenges of the future.
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Figure 8: 3D mesh generation using the depth images generated in Fig. 7

4.2 Limitations and Future Work

The design outcomes in our study have been influenced by the
limited diversity of our dataset, which includes less than 300
images. This limitation has resulted in generated designs that
resemble combinations of multiple existing brackets. To en-
hance the uniqueness and applicability of generated designs,
future research should focus on expanding the dataset to in-
clude a broader range of images. This enhancement would

likely yield more diverse and innovative design outputs.
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